System Design with SystemC By Thorsten Grotker, Stan Liao, Grant Martin
The emergence of the system-on-chip (SoC) era is creating many new challenges at all stages of the design process. Engineers are reconsidering how designs are specified, partitioned and verified. With systems and software engineers programming in C/C++ and their hardware counterparts working in hardware description languages such as VHDL and Verilog, problems arise from the use of different design languages, incompatible tools and fragmented tool flows. Momentum is building behind the SystemC language and modeling platform as the best solution for representing functionality, communication, and software and hardware implementations at various levels of abstraction. The reason is clear: increasing design complexity demands very fast executable specifications to validate system concepts, and only C/C++ delivers adequate levels of abstraction, hardware-software integration, and performance. System design today also demands a single common language and modeling foundation in order to make interoperable system--level design tools, services and intellectual property a reality..
Download
Link 1
The emergence of the system-on-chip (SoC) era is creating many new challenges at all stages of the design process. Engineers are reconsidering how designs are specified, partitioned and verified. With systems and software engineers programming in C/C++ and their hardware counterparts working in hardware description languages such as VHDL and Verilog, problems arise from the use of different design languages, incompatible tools and fragmented tool flows. Momentum is building behind the SystemC language and modeling platform as the best solution for representing functionality, communication, and software and hardware implementations at various levels of abstraction. The reason is clear: increasing design complexity demands very fast executable specifications to validate system concepts, and only C/C++ delivers adequate levels of abstraction, hardware-software integration, and performance. System design today also demands a single common language and modeling foundation in order to make interoperable system--level design tools, services and intellectual property a reality..
Download
Link 1
0 comments: